当引力场较强,观测区域变大时,弯曲的效应就得考虑,否则误差太大。举例类比,在北京市区旅行,你不要考虑地面弯曲问题;但是北京到海南岛的大尺度旅行,纬度引起的地面弯曲就值得考虑了。所以在引力场下,狭义相对论(SR)+牛顿引力理论,变成了广义相对论(GR)。
当引力场极其微弱时,GR回归SR;当运动速度较慢时,GR回到牛顿引力理论。因此广义相对论是以往理论成就的登峰造极,它不违反传统的低速弱引力的实验事实。
换言之,狭义相对论和牛顿引力定律仅仅是爱因斯坦广义相对论的近似情况。那么,广义相对论的独特新结论和预言将是什么情况?
炮弹在引力场下走抛物线,这是引力场造成的,即弯曲时空轨道运动的表现。如果没有引力场,或者沿着地心径向运动,那么炮弹走直线了。显然,牛顿苹果的下落属于后者的地心指向运动情况。
就此,爱因斯坦广义相对论提出了三个可以验证的实验,并在其后由天文学家和物理学家实现了验证。这就是引力红移,光线偏折和水星近日点进动。后来又增加了第四个验证,即雷达回波的时间延迟。引力红移,广义相对论认为,引力势强的地方,固有时间的流逝速度慢,也就是说离天体越近,时间越慢。
这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,就会向光谱中红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。
上世纪60年代初,物理学家在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播产生的红移,结果与广义相对论预言一致。按照光的波动说,光在引力场中不应该有任何偏折,按半经典式的“量子论加牛顿引力论“的混合概念,用普朗克公式E=hv和质能公式E=Mc^2 求出光子的质量,再用牛顿万有引力定律计算得到太阳附近的光的偏折角,是约0.87角秒。而由广义相对论计算得到的偏折角是1.75角秒,为前者的两倍。
1919年,一战刚结束,英国科学家爱丁顿领导的两支考察队,利用跨大西洋日全食的机会观测,得到的结果约为1.7角秒,而且刚好在相对论实验误差范围之内,引起误差的主要原因可能是太阳大气对光线的偏折。、
在现代,通过射电望远镜可以观测类星体的射电信号在太阳引力场中的偏折,而不必等待日全食这种稀有的机会。高精度的测量结果进一步证实了广义相对论的结论。、
进一步,当星体光源发出的光在引力场(星系及黑洞)附近经过时?