傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
收敛性
f到的傅里叶映射为,且,且f的傅里叶级数在L2范数下收敛于f。[6]
对称性质
若 ,则。
奇偶性质
若 ,且 ,其中 表示 的实部, 表示 的虚部,则 是关于 的偶函数,的模是关于的偶函数,辐角是关于的奇函数。
线性性质
若,,则
其中α和β为常数。
时移性质
若,则。
频移性质
若,则。[5]
尺度变换性质
若,则。
卷积定理
时域卷积定理:若,,则;
频域卷积定理:若,,则。
时域微积分
微分性质:若,则,;
积分性质:若,则。
尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法十分相似。奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:
傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;
傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
有关傅里叶变换的FPGA实现
傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。
一般情况下,N点的傅里叶变换对为:
其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅里叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅里叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅里叶变换通过多重低点数傅里叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。
N=8192点DFT的运算表达式为:
式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。